Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Pathogens ; 13(1)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38251357

RESUMEN

The interruption of bacteriological surveillance due to the COVID-19 pandemic brought serious consequences, such as the collapse of health systems and the possible increase in antimicrobial resistance. Therefore, it is necessary to know the rate of resistance and its associated mechanisms in bacteria causing hospital infections during the pandemic. The aim of this work was to show the phenotypic and molecular characteristics of antimicrobial resistance in ESKAPE bacteria in a Mexican tertiary care hospital in the second and third years of the pandemic. For this purpose, during 2021 and 2022, two hundred unduplicated strains of the ESKAPE group (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii) were collected from various clinical sources and categorized by resistance according to the CLSI. An analysis of variance (ANOVA) complemented by the Tukey test was performed to search for changes in antimicrobial susceptibility profiles during the study period. Finally, the mechanisms of resistance involved in carbapenem resistance were analyzed, and the search for efflux pumps and high-risk sequence types in A. baumannii was performed by multilocus analysis (MLST). The results showed no changes in K. pneumoniae resistance during the period analyzed. Decreases in quinolone resistance were identified in E. coli (p = 0.039) and P. aeruginosa (p = 0.03). Interestingly, A. baumannii showed increases in resistance to penicillins (p = 0.004), aminoglycosides (p < 0.001, p = 0.027), carbapenems (p = 0.027), and folate inhibitors (p = 0.001). Several genes involved in carbapenem resistance were identified (blaNDM, blaVIM, blaOXA, blaKPC, blaOXA-40, and blaOXA-48) with a predominance of blaOXA-40 and the adeABCRS efflux pump in A. baumannii. Finally, MLST analysis revealed the presence of globally distributed sequence types (ST369 and ST758) related to hospital outbreaks in other parts of the world. The results presented demonstrate that the ESKAPE group has played an important role during the COVID-19 pandemic as nosocomial antibiotic-resistant pathogens and in particular A. baumannii MDR as a potential reservoir of resistance genes. The implications of the increases in antimicrobial resistance in pathogens of the ESKAPE group and mainly in A. baumannii during the COVID-19 pandemic are analyzed and discussed.

2.
Lett Appl Microbiol ; 77(1)2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38211976

RESUMEN

Acinetobacter baumannii is a relevant bacterium due to its high-resistance profile. It is well known that antimicrobial resistance is primarily linked to mutations and the acquisition of external genomic material, such as plasmids or phages, to which the Clustered Regularly Interspaced Short Palindromic Repeats associated with Cas proteins, or CRISPR-Cas, system is related. It is known that the system can influence the acquisition of foreign genetic material and play a role in various physiological pathways. In this study, we conducted an in-silico analysis using 91 fully assembled genomes of clinical strains obtained from the NCBI database. Among the analyzed genomes, the I-F1 subtype of the CRISPR-Cas system was detected showcasing variations in architecture and phylogeny. Using bioinformatic tools, we determined the presence, distribution, and specific characteristics of the CRISPR-Cas system. We found a possible association of the system with resistance genes but not with virulence determinants. Analysis of the system's components, including spacer sequences, suggests its potential role in protecting against phage infections, highlighting its protective function.


Asunto(s)
Acinetobacter baumannii , Bacteriófagos , Acinetobacter baumannii/genética , Sistemas CRISPR-Cas , Plásmidos/genética , Genómica , Filogenia , Bacteriófagos/genética
3.
Transfus Apher Sci ; 63(1): 103854, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38061923

RESUMEN

BACKGROUND: Poor disinfection is the main cause of blood contamination, so its elimination is key to limiting the entry of bacteria into the collection system. With the advancement of antiseptic technology, antiseptics with sterile, disposable applicators are now available. AIM: To evaluate in situ two antiseptics (with and without applicators) for blood banks and to demonstrate in vitro antiseptic activity on bacterial biofilms of importance in transfusion medicine. METHODS: Antiseptic A (2% sterile solution of chlorhexidine gluconate/70% isopropyl alcohol provided with applicator) and bulk antiseptic B (10% povidone-iodine) were evaluated. The deferred blood donor arms were subjected to disinfection with antiseptics A and B and the contralateral arms were cultured to determine the baseline bacterial load (control). Antiseptic activity was assessed by ANOVA and logaritmic reduction values (LRV) and percentage reduction values (PRV) were calculated. Finally, the in vitro activity of antiseptic A was analyzed by confocal laser scanning microscopy (CLSM) on biofilm models. RESULTS: Prior to disinfection tests, commensal and clinically important bacteria were identified; antiseptic A showed post-disinfection bacterial growth rates of zero compared to controls (p < 0.0001). The frequency of bacterial growth with antiseptic B was 74%. A significant difference was identified between both antiseptics, where antiseptic A showed higher activity (p < 0.5468). LRV and PRV were 0.6-2.5/100% and 0.3-1.7/66.7-99.7% for antiseptics A and B, respectively. Through CLSM, disinfectant A (without applicator) showed lower in vitro antiseptic activity on the tested biofilms at the exposure times recommended by the manufacturer. CONCLUSIONS: Sterile solution of chlorhexidine gluconate/isopropyl alcohol with applicator showed advantages disinfection in deferred blood donors over povidone-iodine.


Asunto(s)
Antiinfecciosos Locales , Clorhexidina/análogos & derivados , Humanos , Antiinfecciosos Locales/farmacología , Povidona Yodada/farmacología , 2-Propanol , Bancos de Sangre
4.
PLoS One ; 18(12): e0294972, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38079398

RESUMEN

The transmission of bacteria and respiratory viruses through expelled saliva microdroplets and aerosols is a significant concern for healthcare workers, further highlighted during the SARS-CoV-2 pandemic. To address this issue, the development of nanomaterials with antimicrobial properties for use as nanolayers in respiratory protection equipment, such as facemasks or respirators, has emerged as a potential solution. In this study, a silver and copper nanolayer called SakCu® was deposited on one side of a spun-bond polypropylene fabric using the magnetron sputtering technique. The antibacterial and antiviral activity of the AgCu nanolayer was evaluated against droplets falling on the material and aerosols passing through it. The effectiveness of the nanolayer was assessed by measuring viral loads of the enveloped virus SARS-CoV-2 and viability assays using respiratory surrogate viruses, including PaMx54, PaMx60, PaMx61 (ssRNA, Leviviridae), and PhiX174 (ssDNA, Microviridae) as representatives of non-enveloped viruses. Colony forming unit (CFU) determination was employed to evaluate the survival of aerobic and anaerobic bacteria. The results demonstrated a nearly exponential reduction in SARS-CoV-2 viral load, achieving complete viral load reduction after 24 hours of contact incubation with the AgCu nanolayer. Viability assays with the surrogate viruses showed a significant reduction in viral replication between 2-4 hours after contact. The simulated viral filtration system demonstrated inhibition of viral replication ranging from 39% to 64%. The viability assays with PhiX174 exhibited a 2-log reduction in viral replication after 24 hours of contact and a 16.31% inhibition in viral filtration assays. Bacterial growth inhibition varied depending on the species, with reductions ranging from 70% to 92% for aerobic bacteria and over 90% for anaerobic strains. In conclusion, the AgCu nanolayer displayed high bactericidal and antiviral activity in contact and aerosol conditions. Therefore, it holds the potential for incorporation into personal protective equipment to effectively reduce and prevent the transmission of aerosol-borne pathogenic bacteria and respiratory viruses.


Asunto(s)
Plata , Virus , Humanos , Plata/farmacología , Cobre/farmacología , Aerosoles y Gotitas Respiratorias , SARS-CoV-2 , Aerosoles , Antivirales/farmacología , Bacterias
5.
Viruses ; 15(12)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38140595

RESUMEN

One of the priority lines of action to contain the SARS-CoV-2 pandemic was vaccination programs for healthcare workers. However, with the emergence of highly contagious strains, such as the Omicron variant, it was necessary to know the serological status of health personnel to make decisions for the application of reinforcements. The aim of this work was to determine the seroprevalence against SARS-CoV-2 in healthcare workers in a Mexican hospital after six months of the administration of the Pfizer-BioNTech vaccine (two doses, 4 weeks apart) and to investigate the association between comorbidities, response to the vaccine, and reinfections. Neutralizing antibodies against SARS-CoV-2 were determined using ELISA assays for 262 employees of Hospital Juárez de México with and without a history of COVID-19. A beta regression analysis was performed to study the associated comorbidities and their relationship with the levels of antibodies against SARS-CoV-2. Finally, an epidemiological follow-up was carried out to detect reinfections in this population. A significant difference in SARS-CoV-2 seroprevalence was observed in workers with a history of COVID-19 prior to vaccination compared to those without a history of the disease (MD: 0.961 and SD: 0.049; <0.001). Beta regression showed that workers with a history of COVID-19 have greater protection compared to those without a history of the infection. Neutralizing antibodies were found to be decreased in alcoholic and diabetic subjects (80.1%). Notably, eight cases of Omicron reinfections were identified, and gender and obesity were associated with the presence of reinfections (6.41 OR; 95% BCa CI: 1.15, 105.0). The response to the vaccine was influenced by the history of SARS-CoV-2 infection and associated comorbidities. The above highlights the importance of prioritizing this segment of the population for reinforcements in periods of less than one year to guarantee their effectiveness against new variants.


Asunto(s)
COVID-19 , Vacunas , Humanos , SARS-CoV-2 , Anticuerpos Neutralizantes , COVID-19/epidemiología , COVID-19/prevención & control , Reinfección , Estudios Seroepidemiológicos , Personal de Salud , Anticuerpos Antivirales , Vacunación
6.
Pathogens ; 12(11)2023 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-38003759

RESUMEN

Empirical use of antibiotics in the treatment of eye infections leads to bacterial pathogens becoming resistant to antibiotics; consequently, treatment failure and eye health complications occur. The aim of this study was to describe the phenotype and genotype of the resistance and adherence of bacterial agents causing eye infections in patients at Hospital Juárez de México. An observational, prospective, cross-sectional, and descriptive study was carried out in patients with signs and symptoms of ocular infection. Bacterial agents were isolated and identified by classical microbiology and mass spectrometry. Antibiotic resistance and adherence profiles were determined. Finally, resistance (mecA/SCCmec) and virulence (icaA and icaD) genes were detected in the Gram-positive population. The results showed that blepharitis was the most prevalent condition in the study population. A MALDI-TOF analysis revealed that Staphylococcus and Pseudomonas genus were the most prevalent as causal agents of infection. Resistances to ß-lactams were detected of 44 to 100%, followed by clindamycins, aminoglycosides, folate inhibitors, and nitrofurans. A multiple correspondence analysis showed a relationship between mecA genotype and ß-lactams resistance. The identification of SCCmecIII and SCCmecIV elements suggested community and hospital sources of infection. Finally, the coexistence of icaA+/icaD+/mecA(SCCmecIII) and icaA+/icaD+/mecA(SCCmecIV) genotypes was detected in S. aureus. The identification of resistant and virulent isolates highlights the importance of developing protocols that address the timely diagnosis of ocular infections. Herein, implications for the failure of antimicrobial therapy in the treatment of ocular infections in susceptible patients are analysed and discussed.

7.
Pathogens ; 12(10)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37887722

RESUMEN

Advances in the knowledge of the pathogenesis of SARS-CoV-2 allowed the survival of COVID-19 patients in intensive care units. However, due to the clinical characteristics of severe patients, they resulted in the appearance of colonization events. Therefore, we speculate that strains of Candida spp. isolated from COVID-19 patients have virulent genetic and phenotypic backgrounds involved in clinical worsening of patients. The aim of this work was to virutype Candida spp. strains isolated from colonized COVID-19 patients, analyze their genomic diversity, and establish clonal dispersion in care areas. The virulent potential of Candida spp. strains isolated from colonized COVID-19 patients was determined through adhesion tests and the search for genes involved with adherence and invasion. Clonal association was done by analysis of intergenic spacer regions. Six species of Candida were involved as colonizing pathogens in COVID-19 patients. The genotype analysis revealed the presence of adherent and invasive backgrounds. The distribution of clones was identified in the COVID-19 care areas, where C. albicans was the predominant species. Evidence shows that Candida spp. have the necessary genetic tools to be able colonize the lungs, and could be a possible causal agent of coinfections in COVID-19 patients. The detection of dispersion of opportunistic pathogens can be unnoticed by classical epidemiology. Epidemiological surveillance against opportunistic fungal pathogens in COVID-19 patients is an immediate need, since the findings presented demonstrate the potential virulence of Candida spp.

8.
Pathogens ; 12(9)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37764993

RESUMEN

SARS-CoV-2 was the cause of the global pandemic that caused a total of 14.9 million deaths during the years 2020 and 2021, according to the WHO. The virus presents a mutation rate between 10-5 and 10-3 substitutions per nucleotide site per cell infection (s/n/c). Due to this, studies aimed at knowing the evolution of this virus could help us to foresee (through the future development of new detection strategies and vaccines that prevent the infection of this virus in human hosts) that a pandemic caused by this virus will be generated again. In this research, we performed a functional annotation and identification of changes in Nsp (non-structural proteins) domains in the coronavirus genome. The comparison of the 13 selected coronavirus pangenomes demonstrated a total of 69 protein families and 57 functions associated with the structural domain's differentials between genomes. A marked evolutionary conservation of non-structural proteins was observed. This allowed us to identify and classify highly pathogenic human coronaviruses into alpha, beta, gamma, and delta groups. The designed Nsp cluster provides insight into the trajectory of SARS-CoV-2, demonstrating that it continues to evolve rapidly. An evolutionary marker allows us to discriminate between phylogenetically divergent groups, viral genotypes, and variants between the alpha and betacoronavirus genera. These types of evolutionary studies provide a window of opportunity to use these Nsp as targets of viral therapies.

9.
Curr Microbiol ; 80(10): 338, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37672120

RESUMEN

The incidence of antibiotics and transcriptional regulation of ARGs in isolated bacteria from wastewater needs to be explored. By HPLC, in samples of untreated wastewater, ampicillin (49.74 ± 5.70 µg/mL), chloramphenicol (0.60 ± 0.03 µg/mL), tylosin (72.95 ± 2.03 µg/mL), and oxytetracycline (0.22 ± 0.01 µg/mL) was determined. Through metagenomic analysis identified 58 bacterial species belonging to 9 phyla and at least 14 species have shown resistance to a variety of antibiotics. Twenty-two bacterial isolates were proved to be resistant to fifteen antibiotics of new generation and used in medical research to combat infectious diseases. Fourteen strains were shown to harbor plasmids in size ranges of 2-5 Kb, 6-10 Kb and plasmids with size greater than 10 Kb. By quantitative PCR it was possible to identify genes sul, qnr, cat1, aadA1, and sat-1 gene were shown to be present in gDNA samples from treated and untreated samples of wastewater and by relative expression analysis, differential expression of cat1, ermB, act, and tetA genes was demonstrated in strains that showed identity with Escherichia coli, Bacteroides fragilis, and Salmonella thyphi, and that were stressed with different concentrations of antibiotics. The presence of ARGs in untreated water samples, as well as in bacterial isolates, was indicative that in these habitats there are microorganisms that can resist ß-lactams, aminoglycosides, tetracyclines, sulfonamides, and quinolones.


Asunto(s)
Antibacterianos , Aguas Residuales , Bacterias , Sulfanilamida , Farmacorresistencia Microbiana
10.
Healthcare (Basel) ; 11(15)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37570358

RESUMEN

In Mexico, urogenital gonorrhea (UG) is one of the main sexually transmitted diseases notifiable by health systems around the world. Epidemiological data on sexually transmitted infections (STIs) in Mexico indicated that UG was "under control" until 2017. However, international epidemiological reports indicate the increase in incidence due to several factors, including an increase during the first year of the COVID-19 pandemic. These factors suggest that this phenomenon may occur in developing countries, including Mexico. Therefore, the aim of this study was to analyze national surveillance data on UG from 2003-2019 and the first year of the COVID-19 pandemic. An epidemiological study of cases and incidence of UG (2003-2020) was performed in the annual reports issued by the General Directorate Epidemiology in Mexico. Cases and incidence were classified and analyzed by year, sex, age group, and seasons (by temperature). Distribution of UG was carried out using heat maps for the whole country. Ultimately, a seasonal and correlation analysis was performed for UG cases versus temperature. The results showed that the distribution of cases and incidence by sex showed that there was no variation over 14 years. From 2016 onward, a significant increase in UG was observed before the pandemic. During the first year of the pandemic, a significant increase was observed in females aged 24-44 years. A heterogeneous distribution of UG was identified; however, border states were ranked among the top states with elevated incidences and cases. Lastly, the occurrence of UG was associated with temperature, related to summer. The information presented is intended to be useful to promote prevention and to contribute to visualize the distribution of UG over the last 18 years for decision making, and to show one of the consequences of the collapse of epidemiological surveillance of UG during the first year of the COVID-19 pandemic.

11.
Pathogens ; 12(5)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37242413

RESUMEN

The ESKAPE group constitute a threat to public health, since these microorganisms are associated with severe infections in hospitals and have a direct relationship with high mortality rates. The presence of these bacteria in hospitals had a direct impact on the incidence of healthcare-associated coinfections in the SARS-CoV-2 pandemic. In recent years, these pathogens have shown resistance to multiple antibiotic families. The presence of high-risk clones within this group of bacteria contributes to the spread of resistance mechanisms worldwide. In the pandemic, these pathogens were implicated in coinfections in severely ill COVID-19 patients. The aim of this review is to describe the main microorganisms of the ESKAPE group involved in coinfections in COVID-19 patients, addressing mainly antimicrobial resistance mechanisms, epidemiology, and high-risk clones.

12.
Am J Infect Control ; 51(1): 11-17, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35483519

RESUMEN

BACKGROUND: Medical devices can be reservoirs of multidrug-resistant bacteria that may be involved in the acquisition of infections since bacteria with the ability to form biofilms that are difficult to eradicate, mainly in mechanical ventilators. The aim of this work was to evaluate the efficacy of O3 against biofilms of bacteria ESKAPE group through disinfection studies. METHODS: The formation of biofilms of ESKAPE group bacteria was induced in vitro. O3 was injected at different exposure times at a constant dose of 600 mg/h. The recovery of surviving bacteria after O3 treatment was assessed by bacterial counts and biofilm disruption was analyzed. Finally, the viability and integrity of biofilms after O3 treatment was determined by confocal laser scanning microscopy (CLSM). RESULTS: O3 showed bactericidal activity on biofilms from 12 min/7.68 ppm for A. baumannii and C. freundii. P. aeruginosa, K. pneumoniae and S. aureus were killed after 15 min/9.60 ppm. Correlation analyses showed inversely proportional relationships between the variables "disruption versus O3". CLSM revealed that death was time-dependent of biofilms upon O3 exposure. Orthogonal plane analysis showed that bacteria located in the outer region of the biofilms were the ones that initially suffered damage from O3 exposure. CONCLUSIONS: Our findings suggest that this method could be an alternative for the disinfection in mechanical ventilators colonized by bacteria biofilm forming.


Asunto(s)
Desinfección , Ozono , Humanos , Desinfección/métodos , Staphylococcus aureus , Ozono/farmacología , Biopelículas , Bacterias , Antibacterianos/farmacología
13.
Am J Infect Control ; 51(7): 729-737, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36002081

RESUMEN

INTRODUCTION: A decrease of detection of outbreaks by multidrug-resistant bacteria in critical areas has been reduced due to COVID-19 pandemic. Therefore, molecular epidemiological surveillance should be a primary tool to reveal associations not evident by classical epidemiology. The aim of this work was to demonstrate the presence of hidden outbreaks in the first wave of the COVID-19 pandemic and to associate their possible origin. METHODS: A population of 96 COVID-19 patients was included in the study (April to June 2020) from Hospital Juárez de México. Genetic identification and antimicrobial susceptibility testing of VAP causative agents isolated from COVID-19 patients was performed. Resistance phenotypes were confirmed by PCR. Clonal association of isolates was performed by analysis of intergenic regions obtained. Finally, the association of clonal cases of VAP patients was performed by timelines. RESULTS: ESKAPE and non-ESKAPE bacteria were identified as causative agents of VAP. ESKAPE bacteria were classified as MDR and XDR. Only A. baumannii and P. aeruginosa were identified as clonally distributed in 13 COVID-19/VAP patients. Time analysis showed that cross-transmission existed between patients and care areas. CONCLUSIONS: Acinetobacter baumannii and Pseudomonas aeruginosa were involved in outbreaks non-detected in COVID-19/VAP patients in the first wave of COVID-19 pandemic.


Asunto(s)
Acinetobacter baumannii , COVID-19 , Neumonía Asociada al Ventilador , Humanos , Pseudomonas aeruginosa , Neumonía Asociada al Ventilador/epidemiología , Pandemias , COVID-19/epidemiología , Farmacorresistencia Bacteriana Múltiple , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
14.
Parasitol Int ; 92: 102678, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36100178

RESUMEN

The epidemiological behaviour of the main extraintestinal complication due to E. histolytica (amoebic liver abscess, ALA) has been little explored in developing countries. Since Mexico meets the characteristics to be considered as endemic, the aim of this work was to analyze the national surveillance data (seven years) of ALA issued by the General Directorate of Epidemiology. An analysis of cases and incidence of ALA (2014-2020) was performed in the annual reports issued by the GDE in Mexico. Cases and incidence of ALA were classified by year, incidence, age group, sex and seasons. Geographical distribution map for the whole country of ALA was constructed. The cases and mean incidence of ALA did not shown significant variation during the study period. Of the total cases accumulated, Sonora, Sinaloa, Nayarit, Colima and Zacatecas states showed the most incidence by ALA. Male sex of 24-44 years old showed higher ALA cases. No temporal behaviour was identified between the ALA cases. In Mexico, the incidence of ALA remains unchanged, however, it should not be underestimated since the monitoring programs for the search for new cases have not yet been implemented mainly in endemic states. These results summarize the priority in the national ALA report.


Asunto(s)
Entamoeba histolytica , Absceso Hepático Amebiano , Masculino , Humanos , Adulto Joven , Adulto , Absceso Hepático Amebiano/epidemiología , México/epidemiología , Incidencia , Estaciones del Año
15.
Int J Mol Sci ; 23(12)2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35743027

RESUMEN

Acinetobacter baumannii is a Gram-negative bacillus that causes multiple infections that can become severe, mainly in hospitalized patients. Its high ability to persist on abiotic surfaces and to resist stressors, together with its high genomic plasticity, make it a remarkable pathogen. Currently, the isolation of strains with high antimicrobial resistance profiles has gained relevance, which complicates patient treatment and prognosis. This resistance capacity is generated by various mechanisms, including the modification of the target site where antimicrobial action is directed. This mechanism is mainly generated by genetic mutations and contributes to resistance against a wide variety of antimicrobials, such as ß-lactams, macrolides, fluoroquinolones, aminoglycosides, among others, including polymyxin resistance, which includes colistin, a rescue antimicrobial used in the treatment of multidrug-resistant strains of A. baumannii and other Gram-negative bacteria. Therefore, the aim of this review is to provide a detailed and up-to-date description of antimicrobial resistance mediated by the target site modification in A. baumannii, as well as to detail the therapeutic options available to fight infections caused by this bacterium.


Asunto(s)
Acinetobacter baumannii , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Colistina/farmacología , Farmacorresistencia Bacteriana Múltiple , Fluoroquinolonas/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , beta-Lactamas/farmacología
16.
J Med Microbiol ; 71(12)2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36748614

RESUMEN

Background. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is a predisposing factor for the development of healthcare-associated infections, of which ventilator-associated pneumonia (VAP) is one.Hypothesis. VAP is caused by ESKAPE bacteria and other pathogens not detected by microbiological culture.Aim. To elucidate the bacterial pathogens of severe coronavirus disease 2019 (COVID-19) and VAP patients by massive sequencing and to predict their degree of relationship with the age and sex of the patients.Methods. Analysis of ribosomal libraries of the V3-V4 hypervariable region obtained by Illumina sequencing of bronchoalveolar lavages from COVID-19 and VAP (first wave) patients from Hospital Juárez de México.Results. Acinetobacter and Pseudomonas were the main bacterial genera in the bronchoalveolar lavages (BALs) analysed. Other members of the ESKAPE group, such as Enterococcus and Klebsiella, were also identified. Taxonomic composition per patient showed that non-ESKAPE genera were present with significant relative abundances, such as Prevotella, Stenotrophomas, Enterococcus, Mycoplasma, Serratia and Corynebacterium. Kruskal-Wallis analysis proved that VAP acquisition is an adverse event that is not influenced by the sex and age of COVID-19 patients.Discussion. Metagenomic findings in COVID-19/VAP patients highlight the importance of implementing comprehensive microbiological diagnostics by including alternative tools for the detection of the causal agents of healthcare-associated infections (HAIs).Conclusions. Timely identification of bacteria 'not sought' in diagnostic bacteriology laboratories will allow specific and targeted treatments. Implications for the restricted diagnosis of VAP causative agents in COVID-19 patients and the presence of pathogens not detected by classical microbiology are analysed and discussed.


Asunto(s)
COVID-19 , Infección Hospitalaria , Microbiota , Neumonía Asociada al Ventilador , Humanos , Neumonía Asociada al Ventilador/diagnóstico , Neumonía Asociada al Ventilador/epidemiología , Antibacterianos/uso terapéutico , COVID-19/diagnóstico , SARS-CoV-2/genética , Lavado Broncoalveolar , Bacterias/genética , Infección Hospitalaria/tratamiento farmacológico , Unidades de Cuidados Intensivos
17.
J Prev Med Hyg ; 62(2): E508-E513, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34604593

RESUMEN

INTRODUCTION: To describe the outbreak of Clostridioides difficile infection (CDI), and the impact of the prevention and control measures that were implemented in the "Hospital Juárez de México" (HJM) for its control. METHODS: A cross-sectional, descriptive, observational, and retrospective study was designed. All information on the hospital outbreak and on health care-associated infections (HCAI) was obtained from the files of the Hospital Epidemiological Surveillance Unit (HESU) of the HJM. RESULTS: A total of 15 cases of CDI were detected from February 20th to May 22nd, 2018, which represented 55.6% and 44.4% for the male and female gender, respectively, with an average age of 56 years and a range of 24 to 86 years old. It was possible to identify six failures and deficiencies that involved health personnel and hospital logistics through analyses based on the situational diagnosis in the services involved and through the construction of cause-effect diagrams. Additionally, through the detection of the outbreak by means of laboratory tests and timeline, the HESU team implemented measures and prospective surveillance to control and prevent the emergence of new cases. CONCLUSIONS: The implementation of basic quality tools, control measures, and the prospective epidemiological surveillance had a positive impact on the control against the outbreak of C. difficile producing toxin B.


Asunto(s)
Infecciones por Clostridium/prevención & control , Infección Hospitalaria/prevención & control , Brotes de Enfermedades/prevención & control , Control de Infecciones/métodos , Adulto , Anciano , Anciano de 80 o más Años , Clostridioides difficile , Infecciones por Clostridium/epidemiología , Infección Hospitalaria/epidemiología , Estudios Transversales , Femenino , Humanos , Masculino , México/epidemiología , Persona de Mediana Edad , Estudios Prospectivos , Estudios Retrospectivos , Centros de Atención Terciaria , Adulto Joven
18.
Arch Microbiol ; 203(9): 5755-5761, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34499216

RESUMEN

Class D ß-lactamases OXA-232 and OXA-48 hydrolyze penicillin, cephalosporins and carbapenems, limiting the pharmacological therapeutics in bacteraemia. OXA producer microorganisms are considered a great emergent threat, especially in nosocomial environments. To determine the resistance profile and genomic characterization of two isolates initially identified as potential carbapenemase-producer Klebsiella oxytoca in a third level hospital. Automated platform BD Phoenix-100 System was used to identify and to biochemically characterize both isolates. Furthermore, the resistance profile was determined through CLSI methods and the whole genome sequences were obtained using Next-Generation Sequencing. Resistance genes were analyzed, and the virtual fingerprinting was determined to corroborate the similarity with related bacteria. Both strains correspond to Raoultella ornithinolytica carrying OXA 232 and OXA-48 genes, confirming the class D ß-lactamases assay results. Here, we present the genetic and phenotypic analysis of multidrug resistance R. ornithinolytica, representing the first report in Mexico.


Asunto(s)
Klebsiella oxytoca , beta-Lactamasas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Proteínas Bacterianas/genética , Enterobacteriaceae/genética , Genómica , Klebsiella oxytoca/genética , Pruebas de Sensibilidad Microbiana , beta-Lactamasas/genética
19.
Am J Infect Control ; 49(12): 1474-1480, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34547360

RESUMEN

BACKGROUND: Mechanical ventilators are essential biomedical devices for the respiratory support of patients with SARS-CoV-2 infection. These devices can be transmitters of bacterial pathogens. Therefore, it is necessary to implement effective disinfection procedures. The aim of this work was to show the impact of the modification of a cleaning and disinfection method of mechanical ventilators of patients with SARS-CoV-2 and ventilator-associated pneumonia. METHODS: A total of 338 mechanical ventilators of patients infected with SARS-CoV-2 and ESKAPE bacteria were divided in two groups. Group A and B were subjected to cleaning and disinfection with superoxidation solution-Cl/enzymatic detergent and isopropyl alcohol, respectively. Both groups were cultured for the detection of ESKAPE bacteria. The isolates were subjected to tests for identification, resistance, adherence, and genomic typing. RESULTS: Contamination rates of 21.6% (n = 36) were identified in group A. The inspiratory limb was the circuit involved in most cases of postdisinfection contamination. Acinetobacter baumanni, Pseudomonas aeruginosa, and multi-resistant Klebsiella pneumoniae were the pathogens involved in the contamination cases. The pathogens were highly adherent and in the case of A. baumanni, clonal dispersion was detected in 14 ventilators. Disinfection with enzymatic detergents allows a 100% reduction in contamination rates. CONCLUSIONS: The implementation of cleaning and disinfection with enzymatic detergents/isopropyl alcohol of mechanical ventilators of patients with SARS-CoV-2 and ESKAPE bacteria had a positive impact on postdisinfection microbial contamination rates.


Asunto(s)
COVID-19 , Neumonía Asociada al Ventilador , Desinfección , Humanos , Neumonía Asociada al Ventilador/epidemiología , Neumonía Asociada al Ventilador/prevención & control , SARS-CoV-2 , Ventiladores Mecánicos
20.
Int J Mol Sci ; 22(11)2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34205867

RESUMEN

The increase in the use of antimicrobials such as colistin for the treatment of infectious diseases has led to the appearance of Aeromonas strains resistant to this drug. However, resistance to colistin not only occurs in the clinical area but has also been determined in Aeromonas isolates from the environment or animals, which has been determined by the detection of mcr genes that confer a resistance mechanism to colistin. The variants mcr-1, mcr-3, and mcr-5 have been detected in the genus Aeromonas in animal, environmental, and human fluids samples. In this article, an overview of the resistance to colistin in Aeromonas is shown, as well as the generalities of this molecule and the recommended methods to determine colistin resistance to be used in some of the genus Aeromonas.


Asunto(s)
Aeromonas/genética , Antibacterianos/química , Colistina/química , Farmacorresistencia Bacteriana/genética , Aeromonas/efectos de los fármacos , Aeromonas/patogenicidad , Antibacterianos/uso terapéutico , Proteínas Bacterianas/genética , Colistina/uso terapéutico , Humanos , Plásmidos/efectos de los fármacos , Plásmidos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...